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Abstract
Periodontal tissues are organized in a complex three-dimensional (3D) architecture, including 
the alveolar bone, cementum, and a highly aligned periodontal ligament (PDL). Regeneration 
is difficult due to the complex structure of these tissues. Currently, materials are developing 
rapidly, among which synthetic polymers and hydrogels have extensive applications. Moreover, 
techniques have made a spurt of progress. By applying guided tissue regeneration (GTR) to 
hydrogels and cell sheets and using 3D printing, a scaffold with an elaborate biomimetic 
structure can be constructed to guide the orientation of fibers. The incorporation of cells and 
biotic factors improves regeneration. Nevertheless, the current studies lack long-term effect 
tracking, clinical research, and in-depth mechanistic research. In summary, periodontal tissue 
engineering still has considerable room for development. The development of materials and 
techniques and an in-depth study of the mechanism will provide an impetus for periodontal 
regeneration.
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Introduction
Human tissue defects caused by diseases or traumas 
are challenges for medicine because human tissues 
have limited capabilities for regeneration and cannot 
meet the demand for in situ repair or ectopic tissue 
and organ transplantation.1-3 In recent years, with the 
progress of materials science and cellular and molecular 
biology, a brand new field, called tissue engineering and 
regenerative medicine, has developed as a promising 
strategy to alleviate the organ shortage crisis.4,5 Advanced 
manufacturing plays an essential role in this field.

Functional periodontal regeneration is a synergy of 
several factors (Figure 1). This review aims to highlight new 
frontiers in periodontal regeneration with a perspective 
on the application of biomaterials and emerging 
biotechnology. By summarizing their advantages and 
disadvantages, as well as existing possible solutions, this 
review provides references for future research directions.

Physiological structure and regeneration forms of 
periodontal tissue
Physiological structure of periodontal tissue
Periodontal tissue refers to a supporting tissue around 
teeth. It supports and fixes teeth in the alveolar socket 
and plays a decisive role in the retention and function of 
teeth. The components of periodontal tissue include the 
periodontal ligament (PDL), the cementum covering the 
surface of the tooth root, and the alveolar bone (Figure 2).6

Periodontal ligament
The PDL, composed of connective tissue, is located in the 
space between the cementum and alveolar socket, with 
a thickness of 0.15–0.38 mm.7,8 It is composed of cells, 
matrix, fiber bundles, nerves, and blood vessels. PDL fiber 
bundles are synthesized by PDL fibroblasts, and both ends 
are embedded in the cementum and alveolar bone, which 
are called Sharpey’s fibers.9 The PDL has the functions of 
tooth retention, tooth nutrition, occlusal force dispersion, 
proprioception, sensory perception, and the ability to 
repair damaged periodontal tissue.9,10

Cementum
In terms of anatomy, the cementum is a part of the tooth, 
but it is a part of the periodontium in terms of function. Its 
primary role is to provide attachment points for Sharpey’s 
fibers.11 Cementum is a thin and mineralized tissue 
covering the roots. There are two main structural forms: 
acellular cementum and cellular cementum. Acellular 
cementum is a calcified extracellular matrix with no cells. 
It is distributed on the surface of the dentin from the neck 
to the middle third of the root and is very important for 
attachment to the PDL. There are many depressions in 
the extracellular matrix of cellular cementum containing 
cementocytes. The cellular cementum mainly covers 
the root tip and plays a role in tooth movement and 
adaptation to the bite force after tooth germination.12 
There is a layer of uncalcified cementum on the surface 
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of the cementum, which is called cementoid. Through 
deposition, the cementum gradually thickens, forming 
a lamellar structure. The function of the cementum is 
to combine the periodontal tissues with teeth through 
Sharpey’s fibers and repair root surface damage through 
the deposition of cementum.13

Alveolar bone
Alveolar bone is the socket in which the tooth roots are 
embedded in the upper and lower jaws, consisting of 
outer cortical plates of compact bone, a central substantia 
spongiosa, and bone lining the alveolus. The bone lining is 
where the PDL fiber bundles attach.7 The proper alveolar 
bone can be rebuilt due to stress. This function comes 
from the PDL.14

Forms of periodontal tissue regeneration
There are three main forms of periodontal tissue healing: 
long epithelial integration, PDL regeneration, and 
osseointegration (Figure 3).

Long epithelial integration
Long epithelial binding is a stable form of healing. 

Compared with normal epithelium, it has lower cell 
proliferation ability.15 In the healing of periodontal tissues, 
oral epithelial cells will quickly form elongated junctional 
epithelium to facilitate organisms to resist bacterial 
infections. Epithelial cells quickly crawl and grow from 
the epithelium of the gingival surface to the wound 
surface, occupying the surface of the tooth root first until 
the surface of the tooth root is covered by thin and long 
combined epithelium, which affects the formation of new 
cementum on the surface of the tooth root and affects the 
integrity of periodontal attachment. This elongation of the 
combined epithelium usually leads to subgingival plaque 
formation and subsequent inflammation.

Periodontal ligament regeneration
PDL regeneration is the ideal way of healing, which refers 
to the restoration of the lost PDL tissue to its original 
form and function. It involves the cooperation of two hard 
tissues (cementum and alveolar bone) and two soft tissues 
(gingiva and PDL).16 The surface of the tooth root exposed 
in the periodontal pocket forms new cementum, and at 
the same time, new alveolar bone is formed. When the 
two are regenerated, one end of the PDL fiber is buried in 
the cementum, and the other end is buried in the alveolar 
bone, forming new periodontal tissue.

Osseointegration
Osseointegration, also known as bone ankylosis, is a 
process of the human immune system in which hard tissue 
is dissolved on the surface of the tooth root. When the 
tooth root is rebsorbed externally, and the damaged area 
is > 20%, bone remodeling is faster than the formation 
of cementum-like tissue; therefore, the cementum and 
dentin on the surface of the tooth root are rebsorbed 
by osteoclasts and replaced by bone tissue.17 The PDL is 
not formed, and the root and alveolar bone are closely 
connected.

Materials for periodontal tissue regeneration
Several materials are used as scaffolds for tissue 
engineering and regenerative medicine. The materials 
used for regenerating tissues must be biocompatible 
and biodegradable. Moreover, the degradation rate of 

Figure 1. The factors involved in periodontal regeneration.

Figure 2. Schematic diagram of the basic structure of periodontal tissues.
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the scaffolds should be consistent with the target tissue 
regeneration rate.18

Polymers are common materials used for tissue 
engineering and regenerative medicine. They are 
classified as natural and synthetic polymers. Natural 
polymers are organic in origin and have good 
biocompatibility and biodegradability but insufficient 
mechanical properties. Synthetic polymers are produced 
industrially from inorganic sources and classified as 
absorbable and nonabsorbable polymers. Resorbable 
polyesters are predominant among synthetic polymers, 
including polycaprolactone (PCL), polylactic acid (PLA), 
polyglycolic acid (PGA), polylactic-polyglycolic acid 
(PLGA), polyethylene glycol (PEG), and PEG with PLGA 
(PEG-PLGA).19 Among them, the most representative 
synthetic polymer is PCL.

PCL, an FDA-approved linear synthetic bioresorbable 
aliphatic polyester, has excellent thermal stability and 
is able to mold into different forms, which makes it 
different from the other materials used in scaffolds 
for tissue engineering.20-22 Moreover, it is hydrophobic 
and can hinder access to the medium and control drug 
dissolution.23 Unfortunately, due to its hydrophobicity, 
PCL is detrimental to cell attachment, proliferation, 
and differentiation.24 Hence, surface modifications are 
necessary. As PCL is easy to process, it has been used to 
repair various tissue defects via three-dimensional (3D) 
printing.

Materials for alveolar bone regeneration
In the early days of periodontal tissue regeneration, 
researchers first focused on the regeneration of bone 
defects. Bone defects are the most important and obvious 
manifestation of periodontal defects and can be clearly 
observed in clinical x-ray examinations. Once the alveolar 
bone has rebsorbed, the tooth loses its bone support and 
loosens gradually, falling off eventually.

Bioactivity, biocompatibility, and biodegradability 
are critical concerns in scaffold design, with important 
roles in bone regeneration.25-28 Moreover, the key 
parameters of porosity, stiffness, and viscoelasticity can 
regulate cell adhesion, proliferation, and osteogenesis 
differentiation.29-36 Well-designed scaffolds can provide 

cells with sustainable regenerative factors and physical 
and biological support, mobilizing stem cells to regenerate 
the defect cavity.37-40

Collagen,41 chitosan,42,43 and gelatin44 are representative 
natural biomaterials with a favorable bone regenerative 
capacity because they share a similar extracellular 
matrix with the host and are suitable for cell migration, 
proliferation, and osteogenic differentiation. Interestingly, 
the in vivo metabolic components of these natural 
biomaterials are needed in the bone tissue reconstruction 
process.

In addition, synthetic polymer-based biomaterials 
derived from a series of polymerization and crosslinking 
processes are designed purposefully with the expected 
properties and functions. Among them, PLGA and PCL45 
with nontoxic, gelling, filming, and capsuling properties 
have found widespread applications.

Calcium phosphate (CaP)-based bioceramics46,47 have 
found widespread applications, especially injectable CaP, 
with strong formability and flexibility. Nevertheless, the 
degradation of injectable CaP is limited, hindering the 
growth of new bones; therefore, it would be necessary to 
introduce porous materials with an enhanced degradation 
rate. Moreover, alloys are also a widely used bone repair 
material. The properties of natural or synthetic materials 
alone are slightly inferior, but when they are combined, a 
better bone repair result is realized.48

A macroporous structure49 whose pores are > 100 
μm allows angiogenesis and the migration of bone 
cells. It imitates the bone tissue structure and can 
significantly improve bone repair outcomes. Additionally, 
osteoinductive factors (e.g., bone morphogenetic 
protein-2 (BMP-2),50 fibroblast growth factor-2 (FGF-2), 
insulin growth factor (IGF), and platelet-derived growth 
factor-BB (PDGF-BB)) have essential roles in promoting 
osteogenesis.

Materials for periodontal ligament and cementum 
regeneration
The PDL is the most important functional part of 
periodontal tissue, and its regeneration is of great 
significance. However, the PDL is a very thin layer 
of connective tissue between the alveolar bone and 

Figure 3. Three types of repair of periodontal defects.
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cementum. The morphology and structure are exquisite. 
Natural materials (such as collagen, chitosan, and 
gelatin)51-53 and synthetic materials (such as PCL54,55 and 
PLGA56) are also suitable for PDLs. Moreover, because of 
their excellent fluidity and plasticity, hydrogel materials 
are very suitable for repairing PDL defects.

Some researchers have optimized the properties of 
hydrogels by designing a green route to fabricate strong, 
supertough, regenerated cellulose films with tightly 
stacked and long-range aligned cellulose nanofibers. 
The study showed that this unique hierarchical structure 
could induce the adhesion and directional arrangement 
of cardiomyocytes, showing the potential for an oriented 
culture of cardiomyocytes in vitro. This advantage may 
be promising for inducing the directional arrangement of 
PDL fibers.57-59

PCL can be electrospun55,60 and electrostatically written61 
to produce PDL scaffolds. In particular, electrostatic 
direct writing technology, whose rotation direction is 
controllable, is very suitable for guiding the directional 
arrangement of PDL fibers.

Few studies have fabricated scaffolds for the cementum 
because it occupies too little space. In studies that have 
produced a three-layer periodontal composite scaffold, the 
cementum layer is made of PCL/amelogenin62 or chitin-
poly (lactic-co-glycolic acid) (LGA)/nanobioactive glass 
ceramic (nBGC)/cementum protein-1.63 The addition of 
amelogenin and cementum protein 1 promotes cementum 
regeneration.

Treatment for periodontal regeneration
Guided tissue regeneration
The most commonly used clinical technology is guided 
tissue regeneration (GTR), a basic treatment applied to 
patients with periodontal defects. GTR uses membrane 
barriers that prevent epithelial cell proliferation and 
stimulate bone regeneration of the defect.64 GTR can be 
used only in some clinical cases, such as intraosseous 
defects and class II fissure defects. Several types of 
GTR membranes have been developed with improved 
physicochemical, mechanical, and biological properties to 
increase bone growth.65,66 However, GTR mainly promotes 
the repair of bone defects, while the regeneration of the 
PDL and cementum is still difficult to achieve.

Hydrogel
Many agents and bioactive factors with strong anti-
inflammatory, bone anabolic, and fiber anabolic effects 
have been studied preclinically, and their feasibility 
of periodontitis therapy has been confirmed. Hence, 
suitable drug delivery is necessary. Hydrogels are a good 
option because of their good fluidity, injectability, and 
biocompatibility.67,68 The emergence of photo-crosslinked 
hydrogels69,70 and thermosensitive hydrogels67,71-73 
optimizes the performance of hydrogels as space-
occupying scaffolds for periodontal defects. Hydrogels are 
crosslinked using a photoinitiator and a light lamp. The in 

situ thermoresponsive hydrogels maintain their fluidity at 
low temperatures, facilitating local injection through thin 
needles. Once administered in vivo, the solution solidifies 
into a hydrogel at body temperature, which would 
help maintain the drug payload for a long time in the 
periodontal pocket. In terms of biocompatibility and cell 
delivery, hydrogels also have excellent performance.74-77

Cell sheets
Tissue engineering strategies based on cells and cell sheets 
have been widely used for periodontal tissue regeneration. 
Cell sheets, a strategy for seeding cell delivery to the 
periodontal defect area, have been introduced to 
regenerate periodontal tissues.3,78 The obtained cell sheet 
is placed between the root and alveolar bone. Human 
dental follicle cells and79 periodontal ligament stem cells 
(PDLSCs)80-82 have been used to seed the cells.

The crosstalk of various cells is of great significance; 
for example, Zhang et al78 demonstrated that the 
crosstalk between PDLSCs and jaw bone marrow-derived 
mesenchymal stem cells in cell sheets facilitates the 
regeneration of complex periodontium-like structures. 
Yang et al83 demonstrated that human urine-derived 
stem cells promote the proliferation and osteogenic 
and cementogenic differentiation of PDLSCs in a ratio-
dependent manner through noncontact coculture and 
further accelerate the regeneration of new structures by 
PDLSC sheets with osteogenic matrix in vivo. Safi et al84 
isolated both PDLSCs and bone marrow mesenchymal 
stem cells and used them in a coculture method to induce 
more PDL cells to create three-layered cell sheets for 
reconstructing the natural PDL. By layering PDL cells and 
osteoblast-like cells on a temperature-responsive culture 
dish, Raju et al85 fabricated a three-dimensional complex 
cell sheet composed of a bone-ligament structure. Ectopic 
and orthotopic transplantation results showed that 
the complex cell sheet group anatomically regenerated 
the bone-ligament structure along with the functional 
connection of PDL-like fibers to the tooth root and 
alveolar bone. Hence, coculture and crosstalk of cells 
provide a promising new strategy for the physiological 
and functional regeneration of periodontal tissue.

Moreover, decellularized PDL cell sheets, which are a 
new technology, have also been confirmed to promote 
periodontal regeneration.86

3D printing
3D printing is an emerging field, but there are few 
applications in periodontal tissue engineering, leaving 
a broad research space. 3D printing is a state-of-the-art 
additive manufacturing to turn 3D digital models into 
complex organs or other tissue constructs by fusing or 
depositing materials layer by layer through the head, 
nozzle, or another printer technology.87 Compared 
with the conventional tissue engineering methods, 3D 
printing has some apparent advantages. The conventional 
tissue engineering techniques cannot precisely control 
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the pore size, geometry, and interconnectivity of the 
scaffolds; therefore, it is impossible to fabricate complex 
biomimetic tissue structures.88 Tissue constructs 
fabricated by conventional methods are too simplified 
to adapt to the native cellular microenvironment,89 while 
3D printing is more likely to fabricate complex, precise, 
and individualized biomimetic tissue constructs with 
reproducibility and repeatability.90-95

3D printing technology emerged in the 1980s. 
Charles Hull invented the world’s first 3D printer 
(stereolithography) in 1983.96,97 Since then, 3D printing 
techniques have made prompt advances. In 1987, 
selective laser sintering (SLS) was invented by Dr. Carl 
Deckard. In 1989, fusion deposition modeling (FDM) 
was devised by Scott Crump. Currently, in addition to SLS 
and FDM, the most popular 3D printing techniques are 
inkjet bioprinting, extrusion printing/bioprinting, and 
stereolithography.

The 3D printing technique uses computer-assisted 
design and manufacturing after a CT scan. The scaffolds 
can be made of one or several materials, such as natural 
polymers, synthetic polymers, or both. They can be 
monophasic or multiphasic and tend to recreate the 
architectural structure of the periodontal tissue. Stem 
cells and/or growth factors can enhance bioactivity and 
promote regeneration.

The ability to engineer bone-ligament interfaces is 
of significant interest for craniofacial systems.98-101 The 
integration of polarized fibers oriented to a mineralizing 
surface promotes adequate maturation and important 
biomechanical properties of the tissue, which regulates 
tissue adaptability and its long-term stability.54 Various 
approaches have been studied to encourage spatiotemporal 
control of multi-tissue formation and integration.102,103

It is not easy to regenerate a single tissue, and 
periodontal regeneration involves three tissue types, 
which is even more difficult. Bone defects are the most 
obvious and often the largest defect; therefore, bone 
restoration is the first to attract researchers’ attention. 
The PDL, as an important functional component, carries 
out the functions of sensation, cushioning, nutrition, 
reconstruction, and restoration of alveolar bone and 
cementum, which cannot be ignored. As a result, with the 
development of science and technology, researchers began 
to produce biphasic scaffolds, including PDL cavities 
and alveolar bone cavities, to achieve the regeneration 
of alveolar bone and PDL fibers and form cementum.55,56 
Another study found that adding a CAP coating to the 
alveolar bone scaffold can increase osteoconductivity and 
achieve more bone regeneration.60 Studies have also made 
a three-layer scaffold, including alveolar bone, PDL, and 
cementum, and added growth factors that can promote its 
regeneration in different parts to achieve the regeneration 
of three tissue types.62

A very important issue in periodontal regeneration is 
the directional arrangement of PDL fibers, which is an 
essential factor in determining its function. Therefore, 

in some scaffolds, a structure to guide the arrangement 
of the fibers is designed. For example, in Park’s research, 
perpendicularly oriented channels were set to guide the 
direction of the fibers.56 Later, the team developed a fiber 
guiding scaffold to replace the previous random porous 
structure.54 A more favorable guiding fiber arrangement 
effect was realized.

Park et al104 continued to conduct in-depth research on 
guiding the direction of PDL fibers. In 2014, they reported 
using directional freeze-casting techniques to control 
pore directional angulations and create topographies 
mimicking the alveolar crest and horizontal, oblique, 
and apical fibers of natural PDLs. Freeze casting is a 
simple approach that can create submicron-level porous 
constructs via aqueous materials105,106 because freezing 
conditions can control the microscopic patterns of ice 
crystals, and the regularity of ice growth can provide 
unidirectionally or radially oriented pores within the 
internal architectures.107 Other researchers on Park’s team 
have explored the effects of different depths and widths 
on grooved pillars for cell alignment, demonstrating 
increased cell alignment further from the pillar boundary 
in films with grooves compared to non-grooved pillars, 
with increased alignment in deeper-grooved (30 µm) 
pillars compared to shallow-grooved (15 µm) pillars.108 
Moreover, a study added oriented nanofibers to the 
scaffold to guide the arrangement of new fibers.109 The 
electrostatic direct writing method is a new technology 
that is also effective in guiding the direction of the fiber.61

Interestingly, scholars have extended the reconstruction 
of the PDL to implants. Cell sheets were applied around 
titanium implants. The results showed that cementum-
like and PDL-like tissues were partly observed on the 
titanium surface.110,111

In contrast with alveolar bone and PDL, the cementum 
has received less attention. On the one hand, the 
cementum is too thin, and the repair space is too small, 
which makes the production of 3D printing scaffolds 
very difficult. On the other hand, too few studies have 
focused on the mechanism of cementum formation. 
The cementum is secreted by cementoblasts. However, 
the regulatory mechanism of PDL stem cells or other 
stem cells differentiated into cementoblasts is not clear. 
Cementum formation may be related to the interaction 
between PDL cells and dentin.

In 2015, Rasperini et al112 reported the first case of 
applying a 3D-printed scaffold to patients with clinical 
periodontal defects. Although this case was unsuccessful 
in the long term, it provided valuable experience for the 
clinical applications of periodontal regeneration. There 
was a large labial soft and osseous defect in the patient’s 
mandible. They designed and 3D-printed the scaffold 
using medical-grade PCL. Recombinant human platelet-
derived growth factor-BB was delivered to the scaffold’s 
internal compartment. In the 13th month, the scaffold 
became exposed. Eventually, a larger dehiscence and 
wound failure were observed, and the entire scaffold was 



Deng et al

J Dent Res Dent Clin Dent Prospects, 2022, Volume 16, Issue 16

removed. The evaluation of the scaffold showed primarily 
connective tissue healing and minimal evidence of bone 
repair. The slow degradation rate of PCL might be the 
main cause of failure. The degradation rate of PCL did 
not match the rate of tissue formation, which caused the 
exposure of the scaffold and the invasion of bacteria. In 
addition, the structure of the scaffold was also of great 
significance. A highly porous structure inside the scaffold 
may promote the formation of blood vessels, which is 
beneficial to bone formation.

Discussion
Periodontal regeneration is significant to stomatology, 
but true periodontal regeneration is hard to achieve. The 
structure of periodontal tissue is very complicated. The 
sandwich structure of two kinds of hard tissues with a 
layer of soft tissue makes the construction of periodontal 
restoration difficult.

At present, the rise of bioprinting provides a fresh 
impetus for periodontal regeneration. The continuous 
development of hydrogel materials will make them very 
promising periodontal restoration materials.63,67,68,74,113-115 
The excellent biocompatibility, fluidity, plasticity, and 
injectability make hydrogels a suitable material to 
combine with bioprinting, particularly photo-crosslinked 
hydrogels and thermosensitive hydrogels.

The weak mechanical properties of hydrogel materials 
can also be solved by adding cellulose.58,59,116 In addition, 
technology for the directional arrangement of cellulose 
in hydrogels has also been developed, which may greatly 
promote the development of technology for guiding the 
arrangement of PDL fibers.57,117,118

However, the long-term effect of the method of guiding 
the orientation of the fibers is not clear. Moreover, the 
direction of the fibers may be inextricably linked to the 
surrounding force field. The adaptation of PDL cells to the 
bite force prompts them to continuously rebuild the PDL 
fibers and finally form a suitable arrangement direction.119

Last but not least, the crucial point is the lack of 
understanding of the mechanism of periodontal tissue 
formation, especially cementum. In recent years, scholars 
have begun to study the mechanism of cementum 
regeneration, and the achievements are promising.120 
CEMP1 and its peptide fragments have been confirmed to 
significantly affect cementum regeneration.121-124 Enamel-
associated proteins and some other proteins have also 
been confirmed by related studies to promote cementum 
regeneration.120 Research on the mechanism and signaling 
pathways of cementum regeneration is still lacking, and 
there is broad room for research.

Conclusion
3D printing and bioprinting technology are promising 
technologies in periodontal regeneration. In the 
meantime, materials are developing by leaps and bounds. 
Only when researchers have a deeper understanding of 
the periodontal regeneration mechanism and technology 

continues to develop and improve can it be possible to 
apply their achievement to construct restorations and 
finally realize real periodontal regeneration.
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