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Introduction
The timing of growth modification treatments is crucial 
for achieving optimal results. The peak of mandibular 
growth represents the ideal time for intervention.1 
Skeletal age determination is an important method for 
assessing growth status in orthodontics.2-4 However, 
chronological age does not always correlate well with 
skeletal age,5-7 leading to the introduction of alternative 
methods for skeletal age assessment.8-11 While hand-wrist 
radiographs are considered the gold standard for skeletal 
age determination,12 their limited use in dentistry is due 
to concerns about excessive radiation exposure.13-15 In 
dentistry, evaluating cervical vertebra maturation (CVM) 
on lateral cephalograms is the most common approach 
to assessing skeletal age, as it is easy to perform and 
provides valuable information for initial diagnosis in 
orthodontics.10,16-18

However, interpreting lateral cephalograms for CVM 
analysis can be challenging due to variations in image 
clarity and the absence of a definitive cutoff point between 
CVM stages.18,19 By incorporating a quantitative approach, 

we can enhance our understanding of the patient’s skeletal 
maturation, ultimately leading to more effective treatment 
outcomes. Moreover, several studies have reported low 
inter- and intra-observer agreement, indicating that the 
CVM method lacks reliability and reproducibility.1,20-23 
These limitations arise from the qualitative nature of 
parameters assessed in the CVM method, such as the 
amount of concavity and the shape of cervical vertebrae, 
highlighting the need for quantitative approaches. 
Quantitative methods have been developed to address 
these limitations, focusing on measuring cervical vertebra 
dimensions (CVD) to determine skeletal age.9,24,25 A strong 
and statistically significant correlation between CVM and 
CVD has been demonstrated.25 In this method, the six 
groups (CVM method) were divided into three groups. 
Groups 3 and 4 in the CVM method (group 2 in the CVD 
method) are associated with the mandibular peak growth 
period 25,26 Therefore, we used the three-class method (pre-
peak, peak, and post-peak) in the present study.

In recent years, the rapid advancement of imaging 
technologies, coupled with the increasing complexity 
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Abstract
Background. The accurate timing of growth modification treatments is crucial for optimal 
results in orthodontics. However, traditional methods for assessing growth status, such as hand-
wrist radiographs and subjective interpretation of lateral cephalograms, have limitations. This 
study aimed to develop a semi-automated approach using machine learning based on cervical 
vertebral dimensions (CVD) for determining skeletal maturation status.
Methods. A dataset comprising 980 lateral cephalograms was collected from the Department 
of Orthodontics, Shahid Beheshti Dental School in Tehran, Iran. Eight landmarks representing 
the corners of the third and fourth cervical vertebrae were selected. A ratio-based approach 
was employed to compute the values of C3 and C4, accompanied by the implementation of 
an auto_error_reduction (AER) function to enhance the accuracy of landmark selection. Linear 
distances and ratios were measured using the dedicated software. A novel data augmentation 
technique was applied to expand the dataset. Subsequently, a stacking model was developed, 
trained on the augmented dataset, and evaluated using a separate test set of 196 cephalograms.
Results. The proposed model achieved an accuracy of 99.49% and demonstrated a loss of 0.003 
on the test set.
Conclusion. By employing feature engineering, simplified landmark selection, AER function, data 
augmentation, and eliminating gender and age features, a model was developed for accurate 
assessment of skeletal maturation for clinical applications.
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of interpretation, has sparked a surge of interest among 
researchers in exploring the potential application of 
artificial intelligence (AI) in orthodontics. AI can 
potentially assist orthodontists in diagnosing and 
predicting outcomes with high accuracy and reduce 
time compared to trained dentists.27 Several studies 
have evaluated the accuracy of deep learning models in 
determining CVM stages. Atici et al28 and Khazaei et al29 
achieved accuracy rates ranging from 75% to 82%. Kök 
et al30 compared deep learning models with machine 
learning models and concluded that deep learning models 
outperformed machine learning models. However, 
considering the novel methodology employed to measure 
CVD in the present study, integrating feature engineering 
and feature selection into machine learning models is 
expected to yield significantly higher accuracy than deep 
learning models. This study aimed to determine skeletal 
maturation status using machine learning algorithms 
based on quantitative measurements of CVD obtained 
from lateral cephalograms. By leveraging the potential of 
AI, this research aimed to enhance the accuracy of skeletal 
age assessment in orthodontics.

Methods 
Data collection and dataset preparation
In this study, 980 digital cephalograms were collected 
from 6‒17-year-olds. The cephalograms were collected 
from existing files in the Department of Orthodontics, 
Shahid Beheshti Dental School, Tehran, Iran. Inclusion 
criteria consisted of high-quality cephalograms and 
cervical vertebrae and the absence of specific syndromes 

and systemic problems in patients. Each cephalogram 
was randomly assigned a unique identifier in the format 
of a letter and a value (e.g., A0). To perform feature 
engineering, the ratio of CVD was calculated according 
to the following formula.25 This method is described in 
Figure 1.
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In this method, eight landmarks representing the 
corners of the third and fourth cervical vertebrae 
were meticulously selected. In cases where the corners 
exhibited curvature, the midpoint of the curve was 
selected. A software application was developed using the 
C# programming language to facilitate the measurement 
of linear distances and ratios. The cephalograms were 
subsequently imported into the software, where they 
underwent resizing to achieve a uniform width of 2000 
pixels while preserving the original aspect ratio. This 
resizing operation was necessary to standardize the 
pixels for subsequent steps. To calculate the lengths, the 
pixel count between the selected landmarks (X and Y 
coordinates) was measured using the following formula:

2 2
2 1 2 1Length ( ) ( )x x y y= − + −

The values of C3 and C4 were calculated for each 
sample. By employing the ratio-based approach, 
inherent variations in magnification associated with 
diverse radiographic views and x-ray devices were 

Figure 1. The selected landmarks, indicated by red and blue dots, represent the corners of the third and fourth cervical vertebrae, respectively. Eight landmarks 
were selected. For C4, a red line connects the midpoint of the perpendicular line from C4a to the line C4c-C4d with the midpoint of the perpendicular line from 
C4b to the line C4c-C4d. The length of this line represents the value of AP4. The blue line, AH4, shows the perpendicular line from C4b to the line C4c-C4d. 
The value of C4 is presented as the ratio AH4/AP4. A similar method was applied to the third cervical vertebra, determining the value corresponding to C3.
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effectively eliminated. An innovative AER function was 
implemented within the software framework to enhance 
the accuracy of landmark selection by the researcher 
(Figure 2). Within this function, the coordinates of each 
selected landmark within the software were subjected 
to random displacements spanning 1 to 4 pixels in both 
the X and Y directions relative to the original landmark. 
Subsequently, the values of C3 and C4 were computed for 
each iteration of the AER function, which was repeated a 
thousand times (as a loop). Ultimately, the average values 
of C3 and C4 were derived as the output for each sample. 
This sophisticated approach substantially reduced 
the error stemming from discrepancies in landmark 
selection across researcher iterations, as the selection area 
encompassed a set of randomly distributed landmarks 
within a maximum radius of 4 pixels. AER function is a 
probabilistic average of surrounding landmarks.

The data, including age, gender, C3 and C4 values, were 
placed in a CSV file. A three-class label column called 
“Maturation” was considered in this CSV file. To prevent 
bias, blind labeling was performed, meaning the expert 
determining the class of each sample was unaware of the 
features of each sample. Initially, labeling was done based 
on the CVM method for each sample’s cephalometric 
measurements by an orthodontist. Using this method, 
six classes were identified (CVS1 to CVS6). In the next 
step, the final classification (maturation) was determined 
as follows:

Class 1: Pre-peak of mandibular growth (CVS1 and 
CVS2 classes)

Class 2: Peak of mandibular growth (CVS3 and CVS4 
classes)

Class 3: Post-peak of mandibular growth (CVS5 and 
CVS6 classes)

Two other important indices, SumC3C4 and C3C4, 
were calculated for each sample based on the following 
formulas and included in the dataset:

3 4SumC3C4 C C= +

3 4 3 4C C C C= ×

Therefore, the final dataset included age, gender, C3, 
C4, SumC3C4, C3C4, and maturation. The project was 
coded in Python programming language using the Jupyter 
Notebook environment (version 6.4.12). The following 
Python libraries were used: Scikit-learn (sklearn), 
CatBoost, LightGBM, and XGBoost.

Data preprocessing and feature selection
The dataset had no missing values, and the sample 
sizes for each class were balanced. The labels were 
converted from qualitative (pre-peak, peak, post-peak) 
to quantitative, representing three classes: 1, 2, and 3. 
The dataset was randomly split into two sets: train (80%) 
and test (20%). Figure 3 visually presents the three-
dimensional distribution of the training data categorized 
by class before and after data augmentation. The x, y, and 
z axes correspond to the values C3, C4, and SumC3C4, 
respectively. Additionally, the size of each sample 
(represented as a sphere) is determined by the weighted 
value of C3C4.

To enhance the generalization and accuracy of our 
machine learning model, introduce data diversity, and 
mitigate overfitting, we developed a data augmentation 
technique called CVD_Generator specifically for the 
training data. This method involves generating random 
values within the range of minimum and maximum 
values for C3 and C4 for each class, considering their 
distributions within the training data. As a result, 
1000 new samples were created for each class, with 
random values of C3 and C4 based on their respective 
classifications. Additionally, the values of SumC3C4 and 
C3C4 were calculated for each newly generated sample. 
The CVD_Generator method is defined as follows:

Figure 2. The AER function’s operational procedure is depicted. We anticipated an operator error of up to 4 pixels during point selection, which the function 
systematically addresses. Within this function, a thousand randomly generated points are automatically distributed across the designated selection area. The 
corresponding values of C3 and C4 were calculated for each generated point. This iterative process is repeated a thousand times, resulting in a dataset of a 
thousand C3 and C4 values for each sample. Finally, the average values of C3 and C4 were computed and considered as the definitive C3 and C4 values for 
each sample, respectively.
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n = 1000, G = {1, 2, 3}, C = {C3, C4}

Where n represents the number of new samples, and 
G is the set of groups defined based on the maturation 
column. The values in C include the set of columns C3 
and C4. For each group gi ∈ G and each value j ∈ {1, 2, ..., 
n}, a new sample was generated as follows:

3 3 4 4 3 4

3 4

: ,  : ,  3 4 : ,  
3 4 : ,  :

ij ij ij ij
ij

ij ij i

C v C v SumC C v v
S

C C v v Maturation g
+  =  ×  

Where Sij is a new row added to the data frame, and vijk 
is a new random value of the Ck column within the range 
of values for that group. Then, the age and gender values 
were also randomly generated based on their respective 
distributions in each class for the new samples.

To reduce the model’s reliance on age and gender and 
mitigate bias, we exclusively focused on the independent 
variables (X): C3, C4, SumC3C4, and C3C4, while 
considering the three-class label as the dependent 
variable (Y). As the selected features possess the same 
nature (dimension ratio), we refrained from applying 
any data normalization techniques (e.g., employing the 
StandardScaler method) or feature scaling to them.

Model architecture
Figure S1 visually represents the data preprocessing 
process, model architecture, and model testing. In the 
initial stage, we employed the 5-fold cross-validation 
technique along with grid search and genetic algorithms 
(for MLP) to determine the optimal hyperparameters for 
each stage 1 model. The hyperparameters of each model 
were adjusted accordingly. Subsequently, each model 
underwent individual training using the training data 
and evaluation using the test data. Consequently, the 
hyperparameters for the base models were appropriately 
configured. The fine-tuned models were then integrated 
as base models within the stacking model (depicted as 
stage 1 in Figure S1). The stacking model was trained 
using the training data. The fundamental concept of 
model stacking involves training multiple diverse base 
models and combining their predictions through the 
training of a meta model. The meta model generates the 
final prediction by considering the predictions made by 
the base models. The base models underwent training 
based on 5-fold cross-validation (CV) on the data and 
forwarded their predictions to the final estimator. In our 
proposed model, we used logistic regression as the final 
estimator, employing default hyperparameters. The 5-fold 
CV technique divides the data into 5 subsets, using one-
fifth as the test data and the remaining 4 subsets as the 

Figure 3. Visualization of the training dataset in 3D format before (A) and after (B) data augmentation
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training data in each iteration. The final prediction is then 
obtained by averaging the results of these 5 iterations. The 
architecture of the stacking model is depicted in Figure S1.

Base models
• ExtraTreesClassifier 
• Multi-layer perceptron (MLP)
• XGBClassifier
• CatBoostClassifier
• LGBMClassifier (LightGBM)
• VotingClassifier 

Final model
• Classification Meta Model: As the ultimate estimator 

in the stacking model, logistic regression was used, 
providing a reliable and interpretable prediction for 
the ensemble model.

Evaluation
In evaluating our model on the test data, we employed 
various metrics to assess its effectiveness. These metrics 
encompass accuracy, precision, F1 score, recall, log loss, 
Jaccard, and the confusion matrix.

Log loss: This function gauges the performance of a 
classification model by computing the negative logarithm 
of the predicted probability for the correct label. In the 
provided formula, N denotes the number of samples, yij 
represents the true label for sample i and class j, and pij 
corresponds to the predicted probability for sample i and 
class j.

( ) ( )
3

1 1

1, log
N

ij ij
i j

L y p y p
N = =

= − ∑∑

Accuracy: Accuracy measures the overall correctness of 
the model’s predictions, calculated as the ratio of correct 
predictions to the total number of predictions.

TP TNaccuracy
TP TN FP FN

+
=

+ + +

• TP (True Positive): The number of positive instances 
correctly predicted as positive

• FP (False Positive): The number of negative instances 
incorrectly predicted as positive

• TN (True Negative): The number of negative 
instances correctly predicted as negative

• FN (False Negative): The number of positive instances 
incorrectly predicted as negative

Precision: Precision assesses the model’s capability 
to accurately predict positive samples, computed as the 
ratio of true positive predictions to the total number of 
predicted positives.

TPprecision
TP FP

=
+

Recall: Recall evaluates the model’s ability to correctly 
identify all positive samples, expressed as the ratio of true 
positive predictions to the total number of true positives.

TPrecall
TP FN

=
+

F1 score: The F1 score represents a measure of the 
balance between precision and recall, computed as the 
harmonic mean of precision and recall.

1 2 precision recallF score
precision recall

×
= ×

+

Additionally, as an extra objective in our study, we 
used the following formula to determine the cutoff points 
between the three classes:

Class_1_range = {x∈X∣y(x) = 1}, Class _2_
range = {x∈X∣y(x) = 2}, Class _3_range = {x∈X∣y(x) = 3}

( ) ( )max Class_1_range min Class_2_range
cut_point_1

2
+

=

The first and second cutoff points were determined 
using the following formula.

( ) ( )max Class_2_range min Class_3_range
cut_point_2

2
+

=

To ensure the presence of a cutoff point that includes 
both the SumC3C4 and C3C4 features, we devised the 
following formula:

cuttoff _1 (C3C4)Final cuttoff point_1 100
cuttoff _1 (SumC3C4)

= ×

cuttoff _2 (C3C4)Final cuttoff point_2 100
cuttoff _2 (SumC3C4)

= ×

Results 
Table 1 shows the means and standard deviations of 
dataset features. Figure 4a visualizes the correlation 
among the initial features, indicating a weak correlation 
with “gender” and strong positive correlations among 
the other features. Table 2 presents the results of fine-
tuning various base models, with the stacking model 
outperforming base models (99.49% accuracy, 0.003 log 
loss). The confusion matrix for the proposed model on 
the test data is shown in Figure 4b. Sensitivity analysis in 
Figure 4c highlights the highest importance of “C3C4” 
and the least importance of “C4.” Table 3 displays cutoff 
points between the three groups based on “SumC3C4” 
and “C3C4” features. The dataset ranges from a minimum 
SumC3C4 value of 0.62 to a maximum of 2.38 and a 
minimum C3C4 value of 0.09 to a maximum of 1.42.
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Discussion 
The present study aimed to assess skeletal maturation 
using cervical vertebrae. We gained valuable insights 
into feature engineering, correlation visualization, model 
fine-tuning, sensitivity analysis, and classification cutoff 
points through data analysis and model evaluation. The 
proposed model achieved 99.49% accuracy and a test set 

loss of 0.003, outperforming base models. This highlights 
the effectiveness of combining multiple models to 
improve skeletal maturation prediction accuracy.

The relationship between hand-wrist radiographs and 
skeletal age is well established.10,31,32 Kim et al33 found that 
an ensemble model of eight machine learning models 
achieved the highest accuracy of 43% in predicting hand-
wrist maturation stages based on cervical vertebrae from 

Table 1. The mean and standard deviation for C3C4, SumC3C4, C4, C3, and age in the initial dataset

Maturation
Age

(mean ± SD)
Gender
(Counts)

C3
(mean ± SD)

C4
(mean ± SD)

SumC3C4
(mean ± SD)

C3C4
(mean ± SD)

Pre peak (n = 326) 8.61 ± 1.65
M:192
F:134

0.52 ± 0.08 0.49 ± 0.08 1.01 ± 0.14 0.26 ± 0.07

Peak (n = 326) 11.53 ± 1.37
M:178
F:148

0.74 ± 0.08 0.68 ± 0.08 1.42 ± 0.14 0.51 ± 0.1

Post peak (n = 328) 16.1 ± 1.23
M:194
F:134

1.01 ± 0.14 0.94 ± 0.12 1.96 ± 0.23 0.97 ± 0.23

Figure 4. A) Heatmap of the correlation among the initial dataset features. B) Confusion matrix of the proposed model on the test data. C) The importance of 
each feature for the proposed model
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lateral cephalograms. However, the CVM method on 
lateral cephalograms is widely recognized as a reliable 
approach for determining skeletal age.16

Two studies compared the performance of deep 
learning models with human visual analysis and reported 
a low agreement percentage of 58%, possibly due to small 
sample sizes or the specific AI models used.34,35 Khazaei 
et al29 increased the sample size to 1846 patients in a 
study using CNN models, resulting in a higher agreement 
percentage. However, the highest accuracy was still 
relatively low in the three-group classification at 82%. 
Similarly, Atici et al28 used data augmentation and found 
their CNN model superior to other deep learning models, 
but the accuracy remained below 83% for females and 
75% for males. In contrast, Seo et al36 achieved a higher 
average accuracy of 95.6% using a deep learning approach 
and image segmentation on a relatively large sample size 
of 900 participants for bone age estimation based on the 
CVM method. Therefore, one strength of our study is the 
use of a large sample size and a novel data augmentation 
approach.

What sets our study apart is its higher accuracy, using 
only eight vertebral reference points and four linear 
measurements. In contrast, Amasya et al37 compared 
five machine learning models in CVM analysis using 26 
marked landmarks and evaluating 54 features on each 
lateral cephalogram, and their results indicated that ANN 
had the highest agreement of 86.93% with visual analysis. 
Additionally, Xie et al38,39 achieved accuracies of 87% 
and 88% in two separate studies by considering various 
parameters such as chronological age, C3 height (H3), 
and the ratio of posterior height to lower width of C4 
(PH4/LW4). Kök et al40 evaluated 24 ANN models with 
27 vertebral reference points and 32 linear measurements, 
with the best model achieving an accuracy of 94.27% 
using 32 linear measurements and age. The highest 
accuracy with the fewest linear measurements (13) was 
86.87%. Therefore, the advantages of our study include 
higher accuracy, fewer landmarks, AER function, data 

augmentation, and feature engineering.
The results revealed a weak correlation between the 

“gender” variable and other features, while strong positive 
correlations were observed among the remaining features. 
These findings suggest that the “gender” variable may 
have limited influence on skeletal maturation assessment, 
while the other features exhibit interdependencies that 
can be leveraged for accurate evaluation. In this study, 
we aimed to develop a skeletal maturation assessment 
model free from gender and age bias. To achieve this, 
we excluded the gender feature from the model input, as 
it showed no significant correlation with other factors. 
Additionally, we removed the age feature to ensure that 
our model solely relies on the geometric dimensions of 
the third and fourth vertebrae. Consequently, when the 
model is deployed in the application software, we may 
confidently avoid the influence of chronological age on 
skeletal maturation status, even if an individual presents 
with a higher chronologic age but has delayed skeletal 
maturation due to factors such as illness, syndrome, or 
vitamin D deficiency.41

We used feature engineering and machine learning 
techniques to evaluate skeletal maturation based on 
cervical vertebrae. We focused on the changing dimensions 
of the third and fourth vertebrae as important features 
through feature engineering, which may explain the lower 
accuracies observed in CNN studies. By considering the 
variability of the anterior border of the third and fourth 
vertebrae during the 6-stage cervical vertebral maturation 
process, we emphasized the length features of AH3 and 
AH4. To standardize radiographs, we used ratios by 
dividing these values by AP3 and AP4. Consequently, the 
values of C3 and C4 contain valuable information about 

Table 2. Model performance metrics on the test data and fine-tuned hyperparameters for base models

Model Accuracy (%) Precision* Recall* F1 score* Log loss Hyperparameters (fine-tuned)

Base 
models

Support vector machine 96.94 0.97 0.97 0.97 0.08 Kernel = 'rbf', C = 800

K-nearest neighbors 97.96 0.98 0.98 0.98 0.19 n_neighbors = 4

Random forest 98.98 0.99 0.99 0.99 0.06 n_estimators = 211, max_depth = 13

Extra trees classifier 97.44 0.98 0.97 0.97 0.10 n_estimators = 63, max_depth = 12

Multi-layer perceptron 97.45 0.98 0.97 0.97 0.09
hidden_layer_sizes = (20,), learning_rate_init = 0.01 
(adaptive), activation = logistic, max_iter = 300, 
solver = 'adam', alpha = 0.0001

XGB classifier 98.98 0.99 0.99 0.99 0.02
n_estimators = 100, max_depth = 3, learning_rate = 0.2, 
subsample = 0.9, colsample_bytree = 0.85

CatBoost  classifier 97.42 0.98 0.98 0.98 0.09 Iterations = 100, learning_rate = 0.1, depth = 5

LGBM classifier 98.98 0.99 0.99 0.99 0.04 n_estimators = 1000, learning_rate = 0.1, max_depth = 10

Voting classifier 98.47 0.99 0.98 0.98 0.09 Default

Final model Proposed Stacking model 99.49 1.0 0.99 0.99 0.003 final_estimator (logisticRegression)

* Weighted average

Table 3. The cutoff points for class separation based on C3C4 and SumC3C4 features

Class separation
Cutoff point 
SumC3C4

Cutoff point 
C3C4

Final cutoff 
point

Between Class 1 and Class 2 1.22 0.365 29.91

Between Class 2 and Class 3 1.56 0.62 39.74
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skeletal growth features. We also introduced the features 
SumC3C4 and C3C4 to represent an individual’s current 
peak growth status within a specified range. C3C4 had 
the most significant impact on the classification model 
among these features. Multiplying features together may 
increase their importance, suggesting the advantage of 
generating new features by combining existing ones in 
other machine learning studies with numerous features in 
this field.

This study introduces a new method for selecting 
cervical vertebra landmarks, using a simplified process 
and fewer landmarks. Instead of using many landmarks, 
we only selected eight landmarks from the cervical 
vertebrae on lateral cephalometric radiographs, making 
the process faster and more user-friendly. This approach 
offers a more efficient alternative to previous machine 
learning studies on cervical vertebrae. The core of our 
proposed method is the AER function, which reduces 
researcher error in landmark selection. We predicted a 
four-pixel operator error within the AER function. We 
standardized the width of all cephalometric images while 
maintaining the aspect ratio and performed landmark 
selection three times on 20 randomly selected samples. 
On average, the coordinates of three points for each 
landmark fell within a four-pixel radius. By automatically 
executing the AER function, we calculated the values 
of C3 and C4 a thousand times for each sample. This 
procedure improved calculation accuracy, reduced bias, 
and minimized landmark selection errors.

By maintaining the data distribution, our data 
augmentation approach effectively generated additional 
samples, enhancing the diversity present in the data. 
This approach helped avoid overfitting, enhancing the 
model’s ability to generalize. Additionally, by increasing 
the quantity of training data within each class, our 
augmentation method provided the model with more 
samples to learn from patterns. 

Unlike previous studies, our method eliminated the need 
to determine the curvature of the inferior border and focused 
on the correlation between vertebral dimensions and stages 
of CVM. The classification model used in the study did 
not rely on chronological age, enhancing confidence in 
the results’ validity and accuracy. The study suggested that 
the optimal timing for growth modification in the CVM 
method is between CS3 and CS4. However, according to 
the three-class cervical vertebral maturation method, the 
middle of group 2 is considered the best treatment timing. 
This implies that the patient’s current skeletal position can 
be visually represented as resembling Figure S2.
Conclusion 
The proposed model achieved an accuracy of 99.49% in 
evaluating skeletal maturation based on cervical vertebrae. 
Overall, by employing feature engineering, simplified 
landmark selection, AER function, data augmentation, 
and the elimination of gender and age features, a model 
has been developed for accurate assessment of skeletal 
maturation for clinical applications.
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