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Introduction 

icroleakage at the implant‒abutment interface 

and screw loosening are two major issues in 

two-piece implant systems.1 Screw loosening could 

result in misfit in the implant‒abutment interface,2 

leading to several biomechanical complications such 

as bacterial microleakage, and screw or/and frame-

work fractures.3 Bacterial microleakage has also been 
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Abstract  

Background. The implant connection type might affect microleakage and screw loosening in two-piece implants. The aim 

of this study was to measure microleakage and screw loosening of two connections of Noble Biocare implant system before 

and after cyclic loading. 

Methods. Twelve samples were categorized into two groups: external hexagon (Branemark) and internal hexagon connection 

(Noble Active) and two implants as controls. The abutments were tightened to a 35 Ncm torque. Initial torque loss (ITL) was 

measured five minutes after retightening the abutment, using a digital torque wrench. The samples were covered with putty 

material to the abutment‒implant junction. Customized metal crowns with 45° inclinations were placed on the abutments and 

cyclic loading was performed accordingly. Thereafter, the secondary torque loss (STL) was measured. Microleakage test was 

also performed. Data were analyzed with Mann-Whitney and Wilcoxon tests (α=0.05). 

Results. There were no statistically significant differences between the two phases of gamma counting between and within 

two groups (P>0.05). However, STL after cyclic loading was less than ITL in both groups (P=0.042). 

Conclusion. Connection type and cyclic loading had no significant effect on microleakage. Furthermore, the internal con-

nection had less TL as compared to the external connection. In addition, the STLs were less than ITLs in both groups. 

Key words: Dental implant‒abutment connection, leakage, gamma rays, torque. 
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shown to be related to peri-implantitis and bone loss 

around the implant.4 Screw loosening is generally a 

result of inadequate or loss of preload following im-

proper initial torquing, screw deformation, screw 

roughness wear, overloading, and micromovements at 

the joint due to functional loading.5 

Generally, there are two types of implant‒abutment 

connections, including external and internal hex con-

nections. There are basic differences between these 

two connections in terms of stress dissipation and 

joint stability. Also, one of the major issues of the 

two-piece implants is the gap created between two 

surfaces. The proximity of this micro-gap to the alve-

olar crest could be the reason for 1 mm of bone loss 

during the first year of loading.6 Therefore, the pres-

ence of micro-gap in the implant‒abutment interface 

is a biomechanical issue, since it is associated with 

bacterial infiltration and also micromovement and 

screw loosening.7 The stress in the external butt joint 

connection is mainly transferred to the screw, while in 

the internal cone connection it is passed on to the in-

ternal walls of the implant.7,8 There are several factors 

that have a role in screw loosening phenomenon in 

two-piece implant systems. These factors include con-

nection geometry design (such as height/depth of anti-

rotation, screw design, screw and platform diameter), 

the amount of applied load, the amount of eccentric 

loading, height of crown, height of abutment, length 

of cantilever and the amount of preload.9-11 

The factors that could affect the amount of bacterial 

infiltration in the implant–abutment interface include 

fit accuracy between the components, the amount of 

preload and micromovements between the jointed 

parts of the system during loading.12,13 Therefore, 

there has been an attempt to reduce the chance of bac-

terial infiltration by improving the fit and stability be-

tween the connected parts.14 According to previous 

studies the implant connection design could also be a 

determining factor in the bacterial leakage in different 

implant systems.15,16 In this context, it has been re-

ported that implants with a locking taper connection 

exhibit more resistance to microleakage16 compared to 

flat-to-flat or tube-in-tube connections.15 It has also 

been suggested that internal conical connection is me-

chanically more stable, while implants with external 

hexed connections have a higher chance for instability 

and leakage.15 However, according to Jansen et al17 

even more internal tight connections such as Morse 

taper is not completely safe against bacterial leakage. 

Moreover, it has been shown that screw-connected 

joints are not thoroughly resistant to fluid seepage and 

microleakage.18 It seems that other options, including 

one-piece implants or pure interference‒fit connec-

tions (locking-taper) are more suitable in terms of 

eliminating the risk of joint instability and microleak-

age.19 

Noble Biocare implant system is one of the pioneers 

and is the most commonly used dental implant system 

in the practice of implant dentistry. The aim of the 

present study was to evaluate and compare the effect 

of two implant‒abutment connection designs on mi-

croleakage and screw loosening before and after cy-

clic loading. The null hypothesis was that there is no 

difference between two implant connections in terms 

of microleakage and screw loosening before and after 

cyclic loading. 

Methods 

Twelve implants (13 mm in height) were categorized 

into two groups, with the first group consisting of ex-

ternal hexagon connection (Branemark, Nobel Bio-

care AB, Göteborg, Sweden) (3.75 mm in diameter) 

(Figure 1) and the second group consisting of conical 

internal hexagon connection (Noble Active, Nobel Bi-

ocare AB, Göteborg, Sweden) (4.3 mm in diameter) 

(Figure 2). Two implant‒abutment assemblies were 

used as negative and positive controls. Snappy abut-

ments (Nobel Biocare, Goteberg, Sweden) with the 

lowest gingival heights (1 mm for Branemark and 1.5 

mm for Nobel Active) were fastened to the implants 

and torqued to 35 Ncm using an electronic torque con-

troller accurate to 0.1 Ncm (Trinkle Enterprise Co, 

Taichung, Taiwan). Each sample was mounted in a 

rigid auto-polymerizing acrylic resin block (Rapid 

Repair, Meliodent, Heraeus Kulzer GmbH, Germany) 

to inhibit its rotation during securing the screws. After 

10 minutes, the abutments were re-torqued to reduce 

the effect of embedment relaxation.20 Initial torque 

loss (ITL) values and ITL percentage were measured 

 
Figure 1. Branemark external hexagon implant (3.75 

mm in diameter) and snappy abutment (1 mm in gin-

gival height)  
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and recorded for each abutment in either group five 

minutes after the second screw tightening using an 

electronic torque wrench (Figure 3). Afterwards, re-

tightening of the abutments was performed as de-

scribed previously. 

The implant‒abutment (I/A) assemblies were 

placed in fast-setting putty (Panasil Putty, Kettenbach 

GmbH & Co. KG. Germany) to the interface of the 

I/A in order to minimize the incidence of bonding of 

radiotracer to their external surfaces (Figure 4). Cy-

anoacrylate adhesive was used in the interface for pre-

vention of penetration of radiotracer between the 

putty and fixture. The positive control sample was not 

covered by putty, while the negative control sample 

was completely covered by putty. 

The microleakage test was performed in two respec-

tive phases. In the first phase, the samples were placed 

into the thallium chloride-201 radiotracer solution of 

0.5 mCi (milli Curie) in 100 mL of water for 24 hours 

before cyclic loading. Then the samples were re-

trieved from the radiotracer solution, cleansed with a 

detergent solution for 1 minute, followed by rinsing 

with distilled water; then the putty was removed and 

the samples were left to dry. Thereafter, the samples 

were placed into specially designed test tubes in the 

same position as each other. To count the photons in 

terms of count per minute (CPM), a gamma counter 

(Kontron, Gammamatic, Switzerland) with photo pick 

adjustment for thallium-201 (77 kev) and an energy 

window of 15% was employed for one minute.21 To 

remove the resultant radioactive contamination, the 

samples were quarantined in a lead-lined container for 

12 days. 

In order to make a template for all the samples, a 

burnout cylinder was placed on an abutment and 

waxed with 0.7-mm thickness in all the areas, meas-

ured with a digital caliper (Mitutoyo America Corp, 

Aurora, Ill). The occlusal plane was created with 45° 

of inclination.22 After casting this pattern, a silicone 

mold was made using polyvinyl siloxane impression 

material (Rapid, Coltene AG, Altstatten, Switzerland) 

to be used for all the samples. The patterns were in-

vested using a phosphate-bonded investment (Cera-

Fina, Whip Mix Corp, Louisville, Ky) and cast in 

base-metal alloy (Verabond 2, Albadent, Cordelia, 

Calif). After divesting the castings using aluminum 

oxide air abrasion, the inner irregularities were re-

moved with a carbide bur (#169L-009; Brasseler Inc., 

Savannah, Ga). Silicone disclosing medium (Fit 

Checker, GC Corp, Tokyo, Japan) was also used to 

achieve the best fit. 

Thereafter, to ensure easy removal of the crowns af-

ter cyclic loading, the crowns were seated on the abut-

ments without any cement. Acrylic resin blocks were 

firmly mounted in a holder of a chewing simulator 

machine (Chewing Simulator, S-D Mechatronic, Ger-

many) with a contact time of 0.2 seconds between the 

 
Figure 2. Noble Active conical internal hexagon im-

plant (4.3 mm in diameter) and snappy abutment (1.5 

mm in gingival height) 

 

Figure 3. Recording torque value in two implant sys-

tems using an electronic torque wrench. 

 

Figure 4. The implant‒abutment assemblies placed in 

putty to the interface in order to minimize the incident 

of bonding of radiotracer to their external surfaces. 
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rod and crown with a frequency of 1 Hz.23 The cyclic 

loading test was performed with a force of 50 N per-

pendicular to the occlusal surface with 500000 cy-

cles.24 After cyclic loading, the samples were re-

moved from the acrylic block and the preparation pro-

cedures were performed as the first stage. Then, the 

second phase of microleakage test was carried out as 

mentioned before. Data from the microleakage tests 

were achieved before and after cyclic loading. Also, 

the removal torque value of each abutment was meas-

ured, and the percentage of secondary torque loss 

(STL) was calculated for each group (STL%). 

To describe the quantitative variables the means  

SD were presented in Tables 1 and 2. In addition, be-

cause of the small sample size within each group, non-

parametric tests were used (Wilcoxon test for compar-

ing two related samples and Mann-Whitney test for 

comparing two independent samples.). P-values 

<0.05 were considered statistically significant. 

Results 

The initial and secondary values of TL (torque loss) 

and PTL (percentage of torque loss) in each group are 

presented in Table 1. In addition, the mean differences 

of TL and PTL were compared between these two 

groups. According to the results, there was a signifi-

cant difference between the two groups in terms of 

torque loss percentage (P=0.008), with the Noble Ac-

tive group exhibiting a lower torque loss percentage 

than the Branemark group (9.8% and 39.8%, respec-

tively) (Table 1). Also, the amount and percentage of 

torque loss after cyclic loading were increased within 

both groups. The Branemark group showed almost 

four times more torque loss after cyclic loading as 

compared to the Noble Active group (P=0.008) (Table 

1).  

Two study groups exhibited an increase in gamma 

count after cyclic loading within each group. How-

ever, it was not significant within each group 

(Branemark, P=0.893; and Noble Active, P=0.225) 

(Table 2). Although the gamma count for the 

Branemark group was greater than the Noble Active 

group, the results indicated that the microleakage dif-

ference between the two groups was not significant 

after cyclic loading (P>0.841) (Table 2). 

Discussion 

The aim of the present study was to evaluate and com-

pare microleakage and screw loosening of two differ-

ent implant connections before and after cyclic load-

ing. The null hypothesis regarding microleakage was 

supported since there was no significant difference 

between and within the two groups in terms of micro-

leakage after cyclic loading. However, the null hy-

pothesis about screw loosening was rejected due to 

significant difference in torque loss between and 

within the two groups after cyclic loading. Since mi-

croleakage would increase when the abutment is not 

torqued according to the recommended torque,18 all 

the abutments were tightened to the manufacturer-rec-

ommended torque in the present study.  

External connection design was the first design in 

dental implants with the aim to simplify surgical 

placement and also provide an anti-rotational fea-

ture.25 Despite the advantages of external hexagon 

connection, there is an increased potential for screw 

loosening and fracture in this connection design.26 

More screw loosening potential is consistent with the 

findings of this study. According to Maeda et al,26 as 

compared to external connection, internal hexagon in-

terface is a more stable joint, especially for single-

tooth restorations, and is more resistant to lateral load-

ing. This statement is also consistent with our find-

ings. The reason for such a result is probably the lower 

level of rotational center and more favorable stress 

distribution in the internal connection design under 

loading.26 The results also showed more torque loss 

percentage in the Branemark group. This finding is in 

agreement with other studies that indicated higher 

joint stability in internal conical connection designs as 

compared to external butt joints.27,28 According to 

Sakaguchi et al,29 when the same amount of tightening 

torque was applied to internal and external connec-

tions, the generated compressive force was higher in 

external connection. However, it has been reported 

that the stress created in the external connection is 

Table 1. Comparison of the initial and secondary torque loss (ITL, STL) and percent of torque loss (PTL) within 

and between two groups 

Variable Group ITL STL P-value* Mean dif P-value** 

TL 
Branemark (External) 7.401.82 21.4022.70 0.042 14.002.35 

0.008 
Nobel Active (internal) 8.602.07 12.003.67 0.042 3.401.82 

PTL 
Branemark (External) 21.205.45 61.007.78 0.042 39.806.83 

0.008 
Nobel Active (internal) 24.405.90 34.2010.62 0.043 9.805.49 

*From Wilcoxon test for comparing ITL and STL values within each group. 

**From Mann-Whitney test for comparing mean differences between the two groups. 
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greater than that in the internal connection.1 This dif-

ference is attributed to the wedge effect in the internal 

connection due to the conical abutment sinking.1 

Another finding of this study was a higher second-

ary torque loss in both groups as compared to initial 

torque loss before cyclic loading. This finding is con-

sistent with most of other similar studies. However, 

few studies have shown that depending on the connec-

tion design, there may be an increase in the torque 

value after mechanical loading.30,31 The suggested 

reason for this finding has been the decrease in the gap 

at the abutment‒implant joint following the increased 

contact between their inner walls after cyclic loading 

in conical Morse taper connections.31,32 It should also 

be mentioned that eccentric loading would not neces-

sarily lead to more torque loss as compared to centric 

loading.30 

However, according to Kim et al33 despite statisti-

cally significant decrease in RTVs after loading in the 

internal hexagon and octagon groups with two-piece 

abutments, there was no significant differences in the 

external group, and also internal hexagon and octagon 

groups with one-piece abutments. Another study 

showed decreased RTVs in all the external and inter-

nal groups after cyclic loading.34 In addition, more 

loose screws were reported for externally connected 

implant systems as compared to internal ones.25 How-

ever, according to Tsuge and Hagiwara implant‒abut-

ment connection geometry has no effect on screw 

loosening, and screw material and provision of proper 

anti-rotational features and tightening torque are more 

important.35 

Although the bacterial counts after cyclic loading 

increased in each group, there was no significant dif-

ference between and within the two groups in terms 

of microleakage. A reason for this finding and also 

relative high SDs could be the relative low number of 

samples in each group. The literature is controversial 

on the effect of implant connection geometry on bac-

terial infiltration. Some studies have reported external 

connection as more prone to leakage than others.15,17,37 

Furthermore, there are data supporting conical Morse 

taper internal connection as the lowest permeable to 

fluid leakage.38,39 This finding has been attributed to 

decreasing of the interface gap, especially after cyclic 

loading, which indicates better adaptation of the con-

tacting surfaces.32 This explanation could also de-

scribe less crestal bone resorption associated with this 

connection.36 Furthermore, in comparison to Morse 

taper connection, external- and internal-hexagon im-

plants have shown higher bacterial accumulation after 

mechanical loading.13,36 However, some authors have 

reported that internal conical joint are not completely 

safe in relation to microleakage.12,15,18 There are also 

articles that advocate that connection design and type 

has no influence on the bacterial leakage results.17 It 

is also known that there is a tendency for increasing 

the gap size under mechanical loading7,12 which is 

consistent with the results of this study.  

Different methods could be used in order to detect 

microleakage the abutment‒implant interface such as 

bacterial incubation, chemical tracers, electerochemi-

cal changes, autoradiographic studies, electronic mi-

croscope, DNA checkerboard, gas-enhanced permea-

tion test (GEPT), and dye infiltration (such as tolui-

dine blue).16,17,37 Therefore, a reason for inconsistent 

findings on microleakage of different implant connec-

tions could be related to using different methods by 

different investigators. Radioisotope materials or ra-

dio-tracing could be used for detecting micro-gaps. 

The advantage of nondestructive radioisotope mate-

rial which was used in the present study is its quanti-

tative and reproducible nature.41 Tracer activity would 

be measured by a count of x rays emitted from the 

penetrated material into the implant body using a 

gamma camera/counter.42 Therefore, use of this 

method was one of the advantages of this study. How-

ever, further studies are necessary to evaluate other 

implant systems under centric and eccentric loading.  

Conclusion 

Within the limitations of this study, the difference be-

tween the two connection types was significant in 

terms of torque loss, and the internal connection ex-

hibited better torque maintenance compared to the ex-

ternal hexagon connection. In addition, the reverse 

torque values decreased in both group after cyclic 

loading. Furthermore, no significant difference was 

found between the external and internal connection 

types in terms of microleakage using radiotracing 

technique. The connection type proved not to be a fac-

tor in bacterial leakage after cyclic loading. 

Table 2. Comparison of microleakage before and after cyclic loading within and between two groups 

Group Before CL After CL P-value* Mean dif P-value** 

Branemark (External) 13657.6012796.95 22004.0025352.06 0.893 8346.4031360.29 
0.841 

Nobel Active (internal) 16045.606607.33 26337.4016330.67 0.225 10291.8019108.17 

*From Wilcoxon test for comparing gamma count before and after cyclic loading within each group. 

**From Mann-Whitney test for comparing mean differences between the two groups. 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Tsuge%20T%5BAuthor%5D&cauthor=true&cauthor_uid=19721272
http://www.ncbi.nlm.nih.gov/pubmed/?term=Hagiwara%20Y%5BAuthor%5D&cauthor=true&cauthor_uid=19721272
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