Abstract
Background. The present study aimed to evaluate the impact of continuous irrigation with saline solution at room temperature or +4°C on the cyclic fatigue resistance of K3XF files.
Methods. Forty-eight new K3XF files (#30, .04 taper) were randomly assigned to three groups: control group (no irrigation), continuous irrigation with saline solution at room temperature, and continuous irrigation with saline solution at +4°C. The instruments were tested in an artificial, stainless steel root canal with a double curvature at body temperature (37±1°C). Time to fracture was converted to the number of cycles to fracture (NCF). The lengths of the fractured fragments were recorded. Kruskal–Wallis H test and one-way ANOVA were used to analyze data.
Results. K3XF files’ cyclic fatigue resistance was significantly higher in the continuous irrigation groups than in the control group. Continuous irrigation with saline solution at +4°C resulted in higher cyclic fatigue resistance than continuous irrigation with saline solution at room temperature. There were no significant differences between the groups in terms of the fractured fragments’ length.
Conclusion. Within this study’s limitations, continuous irrigation with saline solution increased the NCF of NiTi instruments; decreasing the saline solution’s temperature increased this effect.