Abstract
Background. Dental caries is the most important reason for tooth loss. Clinical examination is the most commonly used technique for occlusal caries diagnosis. The diagnostic power of digital systems is a matter of controversy in this field. The present study aimed to determine the diagnostic accuracy of two photostimulable phosphor plate (PSP) systems for early occlusal dentin caries in vitro.
Methods. Sixty-nine extracted molar and premolar teeth were used in this study. The teeth were mounted in triple blocks, and standard radiographs were taken by the Digora and Acteon digital radiographic systems. The original and filter 1-enhanced radiographs were evaluated by two experienced observers twice at an interval of two weeks, and dentin caries was recorded in Tables prepared for the study. The teeth were then sectioned in a buccolingual direction and evaluated under a stereomicroscope. The observers’ reports were compared with microscopic findings as the gold standard. SPSS 23 was used to calculate the kappa coefficient, sensitivity, specificity, and area under the ROC curve (AUC). Statistical significance was set at P<0.05.
Results. The internal and the external agreements in both imaging systems were good to excellent. The means of sensitivity, specificity, and AUC in the Acteon system were 34.1, 92.9, and 0.674, with 30.8, 94.8, and 0.659, respectively, in the Digora system.
Conclusion. The accuracy of early occlusal caries diagnosis was poor on both systems, and no significant difference was observed between the two systems at a 95% confidence interval. Although the AUC was slightly higher in the original images, there was no significant difference between them; however, due to their high specificity, they can prevent unnecessary treatments in the clinic.